What factors should be considered when selecting bends for a industrial application?
How do you calculate the angle of a schedule 40 steel bend, and what are the most common angles used in piping systems?
Angle of Schedule 40 Bends= arctan(Radius / Centerline Length) x 180 / π
Where:
The most common angles used in piping systems are 90 degrees and 45 degrees. Other angles such as 30 degrees, 60 degrees and 180 degrees are also available- the choice of angle depends on the specific application, space limitations, and the desired flow characteristics.
Standard | Sizes | Types |
---|---|---|
ASME B16.49 |
|
|
Available Material | Application | Surface treatment |
|
|
|
Packing | Cold bending methods | Wall thickness |
|
|
SCH 5 to SCH XXS |
Product Angle | Test Certificate | Forming methods |
0° – 180° | EN 10204 3.1 |
|
Testing of Pipe bends
ITEM | OD | THK | Material | DIM | END | UNIT | UNIT PRICE RS | UNIT PRICE (USD) |
---|---|---|---|---|---|---|---|---|
15 DEG BENDS R=1500 MM | 406 MM | 8 MM THIK | IS 3589 GR 410 ERW BLACK | B 16.9 | BW | NOS | 30000.00 | US $ 362.42 |
30 DEG BENDS R=1500 MM | 406 MM | 8 MM THIK | IS 3589 GR 410 ERW BLACK | B 16.9 | BW | NOS | 37000.00 | US $ 446.99 |
45 DEG BENDS R=1500 MM | 406 MM | 8 MM THIK | IS 3589 GR 410 ERW BLACK | B 16.9 | BW | NOS | 45000.00 | US $ 543.63 |
60 DEG BENDS R=1500 MM | 406 MM | 8 MM THIK | IS 3589 GR 410 ERW BLACK | B 16.9 | BW | NOS | 56000.00 | US $ 676.52 |
90 DEG BENDS R=1500 MM | 406 MM | 8 MM THIK | IS 3589 GR 410 ERW BLACK | B 16.9 | BW | NOS | 75000.00 | US $ 906.05 |
90 DEG BENDS R=610 MM | 406 MM | 8 MM THIK | IS 3589 GR 410 ERW BLACK | B 16.9 | BW | NOS | 48000.00 | US $ 579.87 |
Y PIPE - 30 DEG | 406 MM | 8 MM THIK | IS 3589 GR 410 ERW BLACK | B 16.9 | BW | NOS | 75000.00 | US $ 906.05 |
How do you ensure that a ANSI B16.9 steel elbow is properly installed and aligned within a piping system?
CS pipe bend
duplex schedule 40 bend
super duplex schedule 40 galvanized steel bends
Inconel 180 degree pipe bends
Hastelloy pipe bend
Nickel alloy 90 degree bend
NPS | Outside Diameter | Back to Face | Center to Center | ||
---|---|---|---|---|---|
Inch. | OD | A | B | C | D |
1/2 | 21.3 | 48 | – | 76 | – |
3/4 | 26.7 | 43 | – | 57 | – |
1 | 33.4 | 56 | 41 | 76 | 51 |
1 1/4 | 42.2 | 70 | 52 | 95 | 64 |
1 1/2 | 48.3 | 83 | 62 | 114 | 76 |
2 | 60.3 | 106 | 81 | 152 | 102 |
2 1/2 | 73 | 132 | 100 | 191 | 127 |
3 | 88.9 | 159 | 121 | 229 | 152 |
3 1/2 | 101.6 | 184 | 140 | 267 | 178 |
4 | 114.3 | 210 | 159 | 305 | 203 |
5 | 141.3 | 262 | 197 | 381 | 254 |
6 | 168.3 | 313 | 237 | 457 | 305 |
8 | 219.1 | 414 | 313 | 610 | 406 |
10 | 273.1 | 518 | 391 | 762 | 508 |
12 | 323.9 | 619 | 467 | 914 | 610 |
14 | 355.6 | 711 | 533 | 1067 | 711 |
16 | 406.4 | 813 | 610 | 1219 | 813 |
18 | 457.2 | 914 | 686 | 1372 | 914 |
20 | 508 | 1016 | 762 | 1524 | 1016 |
22 | 559 | 1118 | 838 | 1676 | 1118 |
24 | 610 | 1219 | 914 | 1829 | 1219 |
All dimensions are in mm |
NPS | Center-to-End | Bevel O.D. | |||
---|---|---|---|---|---|
C | M | D | |||
Diameter Nominal | Inches | Ser. B | Ser. A | ||
20 | 3/4 | 29 | 25 | 26.9 | |
200 | 8 | 178 | 219 | 219.1 | |
25 | 1 | 38 | 32 | 33.7 | |
32 | 11/4 | 48 | 38 | 42.4 | |
150 | 6 | 143 | 159 | 168.3 | |
50 | 2 | 64 | 57 | 60.3 | |
65 | 21/2 | 76 | 76 | 76.1(73) | |
80 | 3 | 86 | 89 | 88.9 | |
450 | 18 | 343 | 478 | 457.2 | |
90 | 31/2 | 95 | ― | 101.6 | |
100 | 4 | 105 | 108 | 114.3 | |
500 | 20 | 381 | 529 | 508.0 | |
300 | 12 | 254 | 325 | 323.9 | |
400 | 16 | 305 | 426 | 406.4 | |
600 | 24 | 432 | 630 | 610 | |
700 | 28 | 521 | 720 | 711 | |
950 | 38 | 711 | ― | 965 | |
800 | 32 | 597 | 820 | 813 | |
850 | 34 | 635 | ― | 864 | |
1050 | 42 | 762 | 711 | ― | 1067 |
1200 | 48 | 889 | 838 | 1220 | 1220 |
1100 | 44 | 813 | 762 | 1120 | 1118 |
What are some of the most common materials used for bends, and what are their advantages and disadvantages?
What are some of the most common methods for manufacturing bends?
How do you calculate the pressure drop across a exhaust pipes bend, and what factors influence this pressure drop?
The pressure drop across an Exhaust Pipes bending can be calculated using different methods- empirical equations, computational fluid dynamics (CFD) simulations or experimental testing. The pressure drop is influenced by various factors- the bend angle, radius, diameter and Reynolds number (The Reynolds number is a dimensionless parameter that describes the flow regime in the pipe. A high Reynolds number indicates turbulent flow, while a low Reynolds number indicates laminar flow).
Factors that influence the pressure drop across a bend- the bends angle, radius, diameter, Reynolds number, fluid viscosity, fluid density and the roughness of the pipe surface. Rougher surfaces will increase the frictional resistance and pressure drop. Changes in the flow velocity or direction at the bending can also cause additional pressure drop due to flow separation and turbulence.